330 research outputs found

    Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions

    Get PDF
    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity-ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity-productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity-productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions

    A paleolimnological reconstruction of mid and late holocene climate change in South Georgia

    Get PDF
    South Georgia is located at the barrier between Antarctica and the mid-latitudes which makes it a key location to determine the main drivers of past and present-day climate variability and to assess whether the climate in the South Atlantic was synchronous with Antarctica or South America. Here we performed a sedimentological, high resolution (ITRAX) geochemical, and fossil diatom and pigment analysis of a 5.41 m long, ca. 8000 cal yr BP, sediment core from Fan Lake, Annenkov Island, South Georgia (54°29’0’’S, 37°5’0’’W) in an attempt to separate the influence of Holocene palaeoclimatic variability from changes in catchment stability and glacier activity. While radiocarbon ages of events in the top 250 cm (c. 4 ka) of this core appear to be broadly in line with some other studies on South Georgia, the chronology of the lower half still poses several questions. The main lithological division in the profile is marked by the establishment of finely laminated sedimentation at c. 250 cm (4000 yrs BP) and is also picked out by the diatom and pigment analysis. This change is characterized by a reduction to low stable magnetic susceptibility values and a step-change increase in organic matter, and is most likely related to deglaciation of the lake catchment during the ‘Mid Holocene Hypsithermal’. Although the diatom composition is dominated by a single species (i.e., Cyclotella stelligera), relatively minor, but sometimes significant, fluctuations in other diatom species occur in the top 250 cm (mid-late Holocene). Interestingly, the most remarkable change in the diatom record occurs at c. 100 cm (1000 cal yr BP) and coincides with an increase in general lake productivity. We link these changes to increased catchment disturbance at c. 1000 cal yr BP, which is possibly associated with deglaciation following one of four relatively minor ‘post-cooling events’ during the late Holocene

    Indications of dynamic effects on scaling relationships between channel sinuosity and vegetation patch size across a salt marsh platform

    Get PDF
    Salt marshes are important coastal areas that consist of a vegetated intertidal marsh platform and a drainage network of tidal channels. How salt marshes and their drainage networks develop is not fully understood, but it has been shown that the biogeomorphic interactions and feedbacks between vegetation development and channel formation play an important role. We examined the relationships among tidal channel sinuosity, marsh roughness, vegetation type (pioneer, Elymus athericus or Phragmites australis), and patch size at different spatial scales using a high-resolution vegetation map (derived from aerial photography) and lower-resolution satellite imagery processed with linear spectral mixture analysis. The patch-size distribution in all vegetation types corresponded to a power law, suggesting the presence of self-organizational processes. While small vegetation patches are more dominant in pioneer vegetation, they were present in all vegetation types. The largest patch size is restricted to E. athericus. We observed an inverse logarithmic relationship between channel sinuosity and vegetation patch size in all vegetation types. The fact that this relationship is observed in both pioneer and later successional stages suggests that after the establishment of a drainage network in the dynamic pioneer stages of salt marsh development, the later stages of salt marsh succession largely inherit the meandering pattern of the early successional stages. Our study confirms recent evidence that no significant changes in the specific features of tidal channel networks (e.g., channel width, drainage density, and efficiency) take place during the later stages of salt marsh development

    Interactions between benthic copepods, bacteria and diatoms promote nitrogen retention in intertidal marine sediments

    Get PDF
    The present study aims at evaluating the impact of diatoms and copepods on microbial processes mediating nitrate removal in fine-grained intertidal sediments. More specifically, we studied the interactions between copepods, diatoms and bacteria in relation to their effects on nitrate reduction and denitrification. Microcosms containing defaunated marine sediments were subjected to different treatments: an excess of nitrate, copepods, diatoms (Navicula sp.), a combination of copepods and diatoms, and spent medium from copepods. The microcosms were incubated for seven and a half days, after which nutrient concentrations and denitrification potential were measured. Ammonium concentrations were highest in the treatments with copepods or their spent medium, whilst denitrification potential was lowest in these treatments, suggesting that copepods enhance dissimilatory nitrate reduction to ammonium over denitrification. We hypothesize that this is an indirect effect, by providing extra carbon for the bacterial community through the copepods' excretion products, thus changing the C/N ratio in favour of dissimilatory nitrate reduction. Diatoms alone had no effect on the nitrogen fluxes, but they did enhance the effect of copepods, possibly by influencing the quantity and quality of the copepods' excretion products. Our results show that small-scale biological interactions between bacteria, copepods and diatoms can have an important impact on denitrification and hence sediment nitrogen fluxes

    Thermal niche differentiation in the benthic diatom Cylindrotheca closterium (Bacillariophyceae) complex

    Get PDF
    Coastal waters are expected to undergo severe warming in the coming decades. Very little is known about how diatoms, the dominant primary producers in these habitats, will cope with these changes. We investigated the thermal niche of Cylindrotheca closterium, a widespread benthic marine diatom, using 24 strains collected over a wide latitudinal gradient. A multi-marker phylogeny in combination with a species delimitation approach shows that C. closterium represents a (pseudo)cryptic species complex, and this is reflected in distinct growth response patterns in terms of optimum growth temperature, maximum growth rate, and thermal niche width. Strains from the same Glade displayed a similar thermal response, suggesting niche conservation between closely related strains. Due to their lower maximum growth rate and smaller thermal niche width, we expect the polar species to be particularly sensitive to warming, and, in the absence of adaptation, to be replaced with species from lower latitudes

    Diversity and Habitat Specificity of Free-Living Protozoa in Commercial Poultry Houses

    Get PDF
    Despite stringent biosecurity measures, infections by bacterial food pathogens such as Campylobacter are a recurrent problem in industrial poultry houses. As the main transmission route remains unclear, persistence of these infections has been linked to bacterial survival and possibly multiplication within protozoan vectors. To date, however, virtually no information is available on the diversity and occurrence of free-living protozoa in these environments. Using a combination of microscopic analyses of enrichment cultures and molecular methods (denaturing gradient gel electrophoresis [DGGE]) on natural samples, we show that, despite strict hygiene management, free-living protozoa are common and widespread throughout a 6-week rearing period in both water and dry samples from commercial poultry houses. Protozoan communities were highly diverse (over 90 morphotaxa and 22 unique phylotypes from sequenced bands) and included several facultative pathogens and known bacterial vectors. Water samples were consistently more diverse than dry ones and harbored different communities, mainly dominated by flagellates. The morphology-based and molecular methods yielded markedly different results: amoebic and, to a lesser degree, ciliate diversity was seriously underestimated in the DGGE analyses, while some flagellate groups were not found in the microscopic analyses. Some recommendations for improving biosecurity measures in commercial poultry houses are suggested

    Co-occurrence of free-living protozoa and foodborne pathogens on dishcloths: implications for food safety

    Get PDF
    &lt;p&gt;In the present study, the occurrence of free-living protozoa (FLP) and foodborne bacterial pathogens on dishcloths was investigated. Dishcloths form a potentially important source of cross-contamination with FLP and foodborne pathogens in food-related environments. First various protocols for recovering and quantifying FLP from dishcloths were assessed. The stomacher technique is recommended to recover flagellates and amoebae from dishcloths. Ciliates, however, were more efficiently recovered using centrifugation. For enumeration of free-living protozoa on dishcloths, the Most Probable Number method is a convenient method. Enrichment was used to assess FLP diversity on dishcloths (n=38). FLP were found on 89% of the examined dishcloths; 100% of these tested positive for amoebae, 71% for flagellates and 47% for ciliates. Diversity was dominated by amoebae: vahlkampfiids, vannellids, Acanthamoeba spp., Hyperamoeba sp. and Vermamoeba vermiformis were most common. The ciliate genus Colpoda was especially abundant on dishcloths while heterotrophic nanoflagellates mainly belonged to the genus Bodo, the glissomonads and cercomonads. The total number of FLP in used dishcloths ranged from 10 to 10(4) MPN/cm(2). Flagellates were the most abundant group, and ciliates the least abundant. Detergent use was identified as a prime determinant of FLP concentrations on used dishcloths. Bacterial load on dishcloths was high, with a mean total of aerobic bacteria of 7.47 log 10 cfu/cm(2). Escherichia coli was detected in 68% (26/38) of the used dishcloths, with concentrations up to 4 log 10 cfu/cm(2). Foodborne pathogens including Staphylococcus aureus (19/38), Arcobacter butzleri (5/38) and Salmonella enterica subsp. enterica ser. Halle (1/38) were also present. This study showed for the first time that FLP, including some opportunistic pathogens, are a common and diverse group on dishcloths. Moreover, important foodborne pathogens are also regularly recovered. This simultaneous occurrence makes dishcloths a potential risk factor for cross-contamination and a microbial niche for bacteria-FLP interactions.&lt;/p&gt;</p

    Gain and loss of elongation factor genes in green algae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two key genes of the translational apparatus, elongation factor-1 alpha (EF-1α) and elongation factor-like (EFL) have an almost mutually exclusive distribution in eukaryotes. In the green plant lineage, the Chlorophyta encode EFL except <it>Acetabularia </it>where EF-1α is found, and the Streptophyta possess EF-1α except <it>Mesostigma</it>, which has EFL. These results raise questions about evolutionary patterns of gain and loss of EF-1α and EFL. A previous study launched the hypothesis that EF-1α was the primitive state and that EFL was gained once in the ancestor of the green plants, followed by differential loss of EF-1α or EFL in the principal clades of the Viridiplantae. In order to gain more insight in the distribution of EF-1α and EFL in green plants and test this hypothesis we screened the presence of the genes in a large sample of green algae and analyzed their gain-loss dynamics in a maximum likelihood framework using continuous-time Markov models.</p> <p>Results</p> <p>Within the Chlorophyta, EF-1α is shown to be present in three ulvophycean orders (i.e., Dasycladales, Bryopsidales, Siphonocladales) and the genus <it>Ignatius</it>. Models describing gene gain-loss dynamics revealed that the presence of EF-1α, EFL or both genes along the backbone of the green plant phylogeny is highly uncertain due to sensitivity to branch lengths and lack of prior knowledge about ancestral states or rates of gene gain and loss. Model refinements based on insights gained from the EF-1α phylogeny reduce uncertainty but still imply several equally likely possibilities: a primitive EF-1α state with multiple independent EFL gains or coexistence of both genes in the ancestor of the Viridiplantae or Chlorophyta followed by differential loss of one or the other gene in the various lineages.</p> <p>Conclusion</p> <p>EF-1α is much more common among green algae than previously thought. The mutually exclusive distribution of EF-1α and EFL is confirmed in a large sample of green plants. Hypotheses about the gain-loss dynamics of elongation factor genes are hard to test analytically due to a relatively flat likelihood surface, even if prior knowledge is incorporated. Phylogenetic analysis of EFL genes indicates misinterpretations in the recent literature due to uncertainty regarding the root position.</p
    • …
    corecore